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1 Введение

1.1 Эффект Швингера
Из статьи [3] знаем, что много лет назад Швингер вывел выражение для скоро-

сти рождения скалярных электрон-позитронных пар во внешнем электрическом
поле:

Γ =
(eE)2

(2π)3

∞∑
n=1

(−)n+1

n2
exp

[
−πm2

eE
n

]
. (1)

Этот результат был получен путём суммирования диаграмм Фейнмана, описы-
вающих взаимодействие однопетлевых электронных контуров с внешним полем.
Уравнение (1) справедливо только для слабой связи (α ≪ 1) и корректируется
диаграммами высших порядков. Полное выражение для Γ должно иметь следую-
щий вид:

Γ = (eE)2
∞∑
n=0

e2nfn

(
eE

m2

)
. (2)

В случае слабого внешнего поля (eE ≪ m2) и слабой связи формула упрощается
до:

Γ =
(eE)2

(2π)3
e−πm2/eE. (3)

В одной из статей была рассчитана скорость рождения пар магнитных монополей
в модели Джорджи-Глэшоу:

ΓM =
(gB)2

(2π)3
exp

[
−πM 2

gB
+

1

4
g2
]
, (4)

где M — масса монополя, а g = 4π/e — магнитный заряд. Этот результат, полу-
ченный методом инстантонов, формально напоминает формулу Швингера. Можно
показать, что для слабых полей и произвольной связи выражение (2) сводится к:

Γ =
(eE)2

(2π)3
exp

[
−πm2

eE
+

1

4
e2
]
. (5)

Рассмотрим производство электрон-позитронных пар, случай слабой связи. Ско-
рость производства пар связана с мнимой частью плотности вакуумной энергии:

δΓ = −2 Im ln

∫
(dA)(dϕ) e−S, (6)

где S — евклидово действие во внешнем поле:

S =

∫
d4x

[
1

4
F 2
µν + |(∂µ + ieAµ + ieAex

µ )ϕ|2 +m2|ϕ|2
]
. (7)
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После интегрирования по полю ϕ получаем:

δΓ = −2 Im ln

∫
(dA) e−Seff, (8)

где

Seff =
1

4

∫
d4xF 2

µν + tr ln
[
−(∂µ + ieAµ + ieAex

µ )
2 +m2

]
. (9)

Метод «собственного времени» позволяет выразить след через интеграл по путям:

δΓ = Im
∫ ∞

0

dT

T
e−(m2/2)T

∫
[dx] exp

(
− 1

2T

∫ 1

0

dτ ẋ2 + ie

∮
Aex

µ dxµ

)
. (10)

Условие стационарности действия S = m
√∫

ẋ2 + ie
∮
Aex

µ dxµ приводит к уравне-
нию для мировых линий инстантонов:

mẍµ√∫
ẋ2 dτ

= −eFµνẋν. (11)

Окончательное уравнение для worldline инстантонов получается заменой τ = Tu
во время вывода, то есть:

m
ẍµ∫ 1

0 ẋ2 du
= ieFµνẋν, (12)

Периодические решения этого уравнения — окружности в плоскости x3-x4:

xcl
µ = R(0, 0, cos 2πτ, sin 2πτ), R =

m

eE
, S =

πm2

eE
. (13)

Для случая произвольной связи учитывается взаимодействие петель через обмен
фотонами. После перенормировки заряда e и массы m скорость производства пар
принимает вид:

Γ =
(eE)2

(2π)3
exp

[
−πm2

eE
+

1

4
e2
]
. (14)

Краткодействующие поправки (например, массовая перенормировка) не влияют
на ведущий экспоненциальный множитель для слабых полей.

1.2 Магнонная модель
Рассмотрим модель магнонов. Заметим, что есть аналогии с электрическим по-

лем и с рождением электрон/позитронных пар. Задача данной работы будет со-
стоять в том, чтобы воспользоваться уравнением для Worldline инстантонов и рас-
смотреть пространственно неоднородное поле B(x). Для нахождения уравнений
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движения и для решения задач потребуется несколько условий. Из статьи [1] на-
ходим связь между магнитным полем и электрическим: E(x) = − ∂

∂xB(x), то есть
рождение магнонов в магнитном поле B(x) эквивалентно рождению электронов в
скалярном электрическом поле E(x) = − ∂

∂xB(x). И наоборот: если знаем рожде-
ние в электрическом поле E(x), то можем перейти к модели с магнонами, так как
известны результаты стационарных решений для электрического поля [2]. Это и
будет доказано в работе далее.
Эффективный квадратичный лагранжиан можно представить в следующем виде
[1]:

L = f 2
t (D0Φ

∗D0Φ−∆Φ∗Φ)− f 2
s δij∂iΦ

∗∂jΦ (15)

D0Φ = (∂0 + iU)Φ, D0Φ
∗ = (∂0 − iU)Φ∗ (16)

Для лагранжиана (15) длинные производные были написаны выше. Здесь U =
µB, а также в этой модели A0 = B. Кроме того, здесь ∆ = m - энергетическое
расстояние, играет роль массового слагаемого, а константа vs = fs

ft
играет роль

эффективной скорости света в среде. Для данных величин в электрическом поле
эти значения относительно малы [1]: ∆ ≈ 1 МэВ и vs ≈ 60 м/c.
То есть выражение при учёте наших аналогий |(∂0− iµB)Φ|2 для магнитного поля
эквивалентно |(∂µ − ieAµ)Φ|2 для электрического поля. В этом случае магнонные
скалярные поля Φ(x),Φ∗(x) являются флуктуациями над основным состоянием,
а соответствующее волновое уравнение будет являться модификацией уравнения
Клейна-Гордона:

(D2
0 − v2sδ

ij∂i∂j +∆2)Φ(x) = 0 (17)

D0Φ = (∂0 + iU)Φ, U = µB(x)

В электрическом поле считаем случай однородным, то есть A0 = E ·x. При этом
Ex = ∂xA0−∂0Ax = E. Рассмотрим два случая пространственной неоднородности,
когда E = const (в этом случае B(x) = βx, где β = ∂xB - постоянный градиент
магнитного поля) и случай E = E0

cosh2(kx)
(что соответствует B = B0 tanh(kx)).
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2 Основная часть

2.1 Пространственно неоднородный случай
Рассматриваем B(x) = B0 + (∂xB)x, где постоянный градиент ∂xB = β (из

статьи [1]). В модели магнонов градиент магнитного поля эквивалентен эффек-
тивному электрическому полю E = −β.
Уравнения движения для Worldline инстантонов (12) в евклидовом пространстве-

времени из вариационного принципа для действия [2], [3] S = mvs

√∫ 1

0 (ẋ
2
3 + ẋ24)du+

iµ
∫ 1

0 B(x)ẋ4du, где vs = fs
ft

— эффективная скорость света, принимают следующий
вид:

ẍ3√
ẋ23 + ẋ24

= iµβvsẋ4,
ẍ4√

ẋ23 + ẋ24
= −iµβvsẋ3. (18)

Введем параметр a =
√

ẋ23 + ẋ24 = const. Тогда:

ẍ3 = iµβvsaẋ4, ẍ4 = −iµβvsaẋ3. (19)

Другой вариант записи:

ẋ3 = avs

√
1 +

(
µ(∂xB)x3

m

)2

, ẋ4 = −i
µvsa

m
(∂xB)x3. (20)

Здесь a - константа, определённая периодичностью. Решения для магнитного поля
будут выглядеть аналогично решениям для электрического поля [2]. Перейдем к
комплексной переменной z(u) = x3(u) + ix4(u). Уравнения сводятся к виду:

z̈ = −µβavsż. (21)

Решение:
ż(u) = Ce−iµβavsu. (22)

Интегрируем:

z(u) =
C

iµβavs
e−iµβavsu +D. (23)

Учитывая периодичность z(u+ 1) = z(u), получаем:

µβavs = 2πn, n ∈ Z+. (24)

Таким образом итоговая периодическая константа:

a =
2πn

µβvs
.
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После разделения z(u) на действительную и мнимую части можем получить явный
вид траектории:

x3(u) =
m

µ(∂xB)vs
cos (2πnu) =

m

µβvs
cos(2πnu), (25)

x4(u) =
m

µ(∂xB)vs
sin (2πnu) =

m

µβvs
sin(2πnu). (26)

Здесь n ∈ Z+, а радиус окружности: m
µ(∂xB)vs

. Произведём проверку решения:

ẋ3 = −2πn
m

µβvs
sin(2πnu), ẋ4 = 2πn

m

µβvs
cos(2πnu),

a =
√

ẋ23 + ẋ24 =
2πnm

µβvs
.

Рассмотрим инстантонное стационарное действие S0 (по методу, описанному в [2]
и [3]). Подставляем решения в действие:

S0 = mvs

√∫ 1

0

(ẋ23 + ẋ24)du+ iµ

∫ 1

0

B(x)ẋ4du. (27)

Рассмотрим два члена выписанного выражения по отдельности. Первый член:

m
√
a2 = ma =

2πnm2

µβvs
. (28)

Второй член не такой тривиальный, нужно произвести интегрирование с учётом
граничных условий:

iµ

∫ 1

0

(B0 + βx3)ẋ4du = iµB0

∫ 1

0

ẋ4du+ iµβ

∫ 1

0

x3ẋ4du. (29)

∫ 1

0 ẋ4du = x4(1)− x4(0) = 0 (периодичность).∫ 1

0 x3ẋ4du = −
∫ 1

0 ẋ3x4du = − m2

(µβ)2vs
πn. (было произведено интегрирование по ча-

стям и перекидывание производной).
Итоговое действие:

S0 =
2πnm2

µβvs
− iµβ ·

(
− πnm2

µ2β2vs

)
=

πnm2

µβvs
. (30)

Это действие приводит к экспоненциальному подавлению образования магнон-
антимагнонных пар с шириной, записанной ниже:

ImΓ ∼ e−S0.
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Или же можно записать следующим образом:

ImΓ ∼ exp

(
− πm2

µ(∂xB)vs

)
. (31)

Интерпретировать полученные результаты для постоянного градиента магнитно-
го поля (эквивалентного постоянному электрическому полю) можем следующим
образом:
1) Инстантонные траектории — окружности в плоскости (x3, x4) с радиусом m

µβ ,
аналитическое выражение дано формулами (25) и (26).
2) Подавление производства пар — сильный градиент β уменьшает S0, усиливая
рождение магнон-антимагнонных пар, аналогично эффекту Швингера в электри-
ческом поле. Аналитическое выражение инстантонного стационарного действия
дано в (30).
Пример графика на Рис. 1 для параметров m = 1, µ = 1, β = 0.5, n = 1.

2.2 Локализованная неоднородность
Рассмотрим теперь магнитное поле вида B(x) = B0 tanh(kx), проводим те же

самые аналогии, только выражения будут менее тривиальными.
Градиент магнитного поля:

∂xB(x) = B0k sech2(kx)

приводит к эффективному электрическому полю:

E(x) = −∂xB(x) = −B0k sech2(kx),

где константа −B0k обозначалась как E0 во введении и как E в [2]. Действие для
Worldline инстантона запишется точно так же:

S = mvs

√∫ 1

0

ẋ2du+ iµ

∫ 1

0

B(x)ẋ4du, (32)

где ẋ2 = ẋ23 + ẋ24, µ — эффективный заряд магнона.
Уравнения Эйлера-Лагранжа (после варьирования):

d

du

(
mẋ3√
ẋ2

)
= iµ∂x3

B(x)ẋ4, (33)

d

du

(
mẋ4√
ẋ2

)
= iµ∂x4

B(x)ẋ3. (34)
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Рис. 1: Инстантонная траектория в виде окружности в плоскости (x3, x4) с ради-
усом R = m

µβ = 2.

Так как B(x) зависит только от x3, упрощаем:

ẍ3√
ẋ23 + ẋ24

=
iµvs
m

∂x3
B(x)ẋ4, (35)

ẍ4√
ẋ23 + ẋ24

= −iµvs
m

∂x3
B(x)ẋ3. (36)

Теперь выполним требуемую подстановку B(x) = B0 tanh(kx3) (выбираем x3 в ка-
честве ведущей координаты). Введем обозначение a =

√
ẋ23 + ẋ24 = const (условие

стационарности). Уравнения (12) принимают вид:

ẍ3 =
iµB0kavs

m
sech2(kx3)ẋ4, (37)

ẍ4 = −iµB0kavs
m

sech2(kx3)ẋ3. (38)
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Другой вариант записи уравнений движения для инстантонов x3(u) и x4(u) в Ев-
клидовом пространстве-времени:

ẋ3 = avs

√
1 +

(
µB0 tanh(kx3)

m

)2

, ẋ4 = −iµavs
m

B0 tanh(kx3), (39)

где под точкой подразумеваем производную: ẋ3 = dx3

du .
Решим эти уравнения по аналогии со случаем постоянного градиента магнитного
поля. Введём параметр γ = mk

µB0vs
.

Сделаем замену переменных:

ẋ3 = avs cos θ(u), ẋ4 = avs sin θ(u), (40)

где θ(u) — угол, зависящий от u. Тогда:

dθ

du
=

µB0kavs
m

sech2(kx3). (41)

Откуда после обратной замены получим выражение для x3(u):

x3(u) =
1

k
arcsinh

(
γ√

1− γ2
sin

(√
1− γ2

γ
kau

))
. (42)

Более компактное выражение:

x3(u) =
1

k
arcsinh

(
γ√

1− γ2
sin(2πnu)

)
. (43)

Аналогично для x4(u). Из уравнения для ẋ4:

ẋ4 = −avs
γ

tanh(kx3). (44)

Подставляя tanh(kx3) =
γ cos(2πnu)√
1+γ2 cos2(2πnu)

, получим следующее:

ẋ4 = − avsγ cos(2πnu)√
1 + γ2 cos2(2πnu)

. (45)

Производим интегрирование, получив предварительный ответ:

x4(u) = − avs√
1− γ2

∫
γ cos(2πnu)√

1 + γ2 cos2(2πnu)
du. (46)
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После замены sin θ = γ cos(2πnu) окончательное выражение:

x4(u) =
1

k
√

1− γ2
arcsin (γ cos(2πnu)) . (47)

Проведём проверку на условие периодичности. Для замкнутости траектории тре-
буем условие (x(u+1) = x(u)), как и в случае постоянного градиента магнитного
поля: √

1− γ2

γ
kavs = 2πn, n ∈ Z+.

Отсюда находим a:
a =

2πnγ

kvs
√

1− γ2
. (48)

Теперь находим стационарное инстантонное действие S0. Подставляем решения в
действие:

S0 = mavs + iµ

∫ 1

0

B(x)ẋ4du. (49)

Снова разделим действие на два слагаемых для удобства. Первый член останется
нетронутым, только подставим выражение для a из (48):

ma =
2πnmγ

k
√
1− γ2

. (50)

Во втором члене вынесем за знак интеграла постоянные множители:

iµ

∫ 1

0

B0 tanh(kx3)ẋ4du = iµB0

∫ 1

0

tanh(kx3)ẋ4du. (51)

Используя выражения ẋ4 = avs sin θ(u) и tanh(kx3) =
γ√
1−γ2

sin θ(u), получаем:

iµB0avs ·
γ√

1− γ2

∫ 1

0

sin2 θ(u)du = iµB0avs ·
γ

2
√

1− γ2
. (52)

Итоговое действие запишется так:

S0 =
2πnmγ

kvs
√

1− γ2
+ iµB0a ·

γ

2vs
√

1− γ2
. (53)

После упрощений получим окончательную формулу для стационарного действия
S0:

S0 = n
πm2

µB0vs

(
2

1 +
√
1− γ2

)
, (54)
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где n ∈ Z+.
Можем рассмотреть предельные случаи:
1. γ → 0 (слабая неоднородность) приводит к тому, что S0 → n πm2

µB0vs
, а этот ре-

зультат совпадает с полученным для постоянного градиента магнитного поля.
2. γ → 1 приводит к тому, что S0 → ∞, что означает полное подавление произ-
водства пар.
Если рассмотреть скорость производства пар:

ImΓ ∼ e−S0,

то видим, что при γ < 1, пространственная неоднородность уменьшает S0, увели-
чивая производство пар по сравнению с постоянным полем.

Рис. 2: Инстантонные траектории в виде овалов в плоскости (x3, x4) с разными
параметрами γ.

Видно на Рис. 2, что при γ → 0 получаем практически окружность единичного
радиуса, а при γ → 1 − 0 траектория вытягивается вдоль оси x4, оставаясь при
этом замкнутой.
Таким образом, получены аналитические выражения для траекторий движения
x3(u) и x4(u), формулы (43) и (47) соответственно. Аналитическое выражение для
инстантонного действия даётся формулой (54).
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3 Основные результаты
Пространственно неоднородный случай:
1. Постоянный градиент магнитного поля B(x) = B0 + (∂xB)x:
а) Инстантонные траектории — окружности в плоскости (x3, x4) с радиусом m

µβ ,
аналитическое выражение дано формулами (25) и (26).
б) Подавление производства пар — сильный градиент β уменьшает S0, усиливая
рождение магнон-антимагнонных пар, аналогично эффекту Швингера в электри-
ческом поле. Аналитическое выражение инстантонного стационарного действия
дано в (30).
2. Случай B(x) = B0 tanh(kx):
а) γ → 0 (слабая неоднородность) приводит к тому, что S0 → n πm2

µB0vs
, а этот ре-

зультат совпадает с полученным для постоянного градиента магнитного поля.
б) γ → 1 приводит к тому, что S0 → ∞, что означает полное подавление произ-
водства пар.
При γ < 1, пространственная неоднородность уменьшает S0, увеличивая произ-
водство пар по сравнению с постоянным полем. При γ → 0 получаем практически
окружность единичного радиуса, а при γ → 1− 0 траектория вытягивается вдоль
оси x4, оставаясь при этом замкнутой.
Аналитические выражения для траекторий движения x3(u) и x4(u) - формулы (43)
и (47) соответственно. Аналитическое выражение для инстантонного действия да-
ётся формулой (54).
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